Matrix factorizations for reversible integer implementation of orthonormal M-band wavelet transforms

نویسندگان

  • Tony Lin
  • Pengwei Hao
  • Shufang Xu
چکیده

This paper presents a matrix factorization method for implementing orthonormal M-band wavelet reversible integer transforms. Based on an algebraic construction approach, the polyphase matrix of orthonormal M-band wavelet transforms can be factorized into a finite sequence of elementary reversible matrices that map integers to integers reversibly. These elementary reversible matrices can be further factorized into lifting matrices, thus we extend the classical lifting scheme to a more flexible framework. r 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix factorizations for reversible integer mapping

Reversible integer mapping is essential for lossless source coding by transformation. A general matrix factorization theory for reversible integer mapping of invertible linear transforms is developed in this paper. Concepts of the integer factor and the elementary reversible matrix (ERM) for integer mapping are introduced, and two forms of ERM—triangular ERM (TERM) and single-row ERM (SERM)—are...

متن کامل

General Reversible Integer Transform Conversion

In this paper, we introduce an algorithm, which is named the triangular matrix scheme, to convert every reversible discrete linear transform into a reversible integer transform. The integer transform is a special case of the discrete linear transforms whose entries can be expressed as a summation of 2 k. It is much more efficient than the non-integer transform since it can be implemented by a f...

متن کامل

Reversible Wavelet Transforms and Their Application to Embedded

The design and implementation of reversible wavelet/subband transforms and their application to reversible embedded image compression are studied. Reversible embedded image coding provides a natural way for building uniied lossy/lossless image compression systems, and reversible transforms are a key component in such systems. A lifting-based method is examined as a means for constructing revers...

متن کامل

Reversible Wavelet Transforms and Their Application to Embedded Image Compression

The design and implementation of reversible wavelet/subband transforms and their application to reversible embedded image compression are studied. Reversible embedded image coding provides a natural way for building uni ed lossy/lossless image compression systems, and reversible transforms are a key component in such systems. A lifting-based method is examined as a means for constructing revers...

متن کامل

Two Families of Symmetry-preserving Reversible Integer-to-integer Wavelet Transforms

Two families of symmetry-preserving reversible integer-to-integer wavelet transforms are introduced. Briefly, we explain how transforms from these families can be used in conjunction with symmetric extension in order to handle signals of arbitrary length in a nonexpansive manner (which is often a desirable attribute in signal coding applications). The characteristics of the two transform famili...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Signal Processing

دوره 86  شماره 

صفحات  -

تاریخ انتشار 2006